基于有限記憶、概率學習的雙時間尺度切片資源分配方法 | |
所屬分類:技術論文 | |
上傳者:wwei | |
文檔大小:4213 K | |
標簽: 網絡切片 資源分配 雙時間尺度 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:網絡切片是使網絡能夠滿足不同垂直領域的不同服務需求的關鍵要素,為解決網絡中切片類型動態變化的問題,提出了一種聯邦-多智能體強化學習雙時間尺度資源分配(F-MALML)算法。大時間尺度下,通過有限記憶學習算法為每個基站分配資源;小時間尺度內各基站使用F-MALML算法進一步為切片中的用戶動態分配資源。引入了一種概率學習機制,根據前一時隙的分配結果和網絡實際狀態,動態調整每個時間尺度的分配策略。仿真結果表明,所提算法相比于其他兩種基準算法在新增切片的切片滿意度及系統頻譜效率方面都有較大提升,且表現出更好的穩定性。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2