基于改進YOLOv8的輕量化雜草識別算法研究 | |
所屬分類:技術論文 | |
上傳者:wwei | |
文檔大小:4105 K | |
標簽: 雜草識別 PP-LCNet Effcient-RepGFPN | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:針對目前田間雜草識別模型精度低,以及參數多難以滿足在計算資源有限的移動設備和嵌入式設備中部署的問題,提出一種基于YOLOv8的輕量化田間雜草識別模型。該模型使用改進后的PP-LCNet替代原有主干網絡,保證精度的前提下減少模型的計算量;其次引入Effcient-RepGFPN來作為頸部網絡,并將上采樣前的兩個CSPStage模塊使用RFAConv來替代,利用不同尺度的特征來提高目標檢測的性能;最后,更換MPDIoU損失函數,增強了模型的收斂性和穩定性。實驗結果表明,改進模型與原模型相比準確率提升了2.1%,召回率提升了2.8%,mAP值提升了0.2%,同時模型的大小與計算量分別減少為原始模型的68.2%和62.6%,體現了改進算法的有效性。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2