基于深度學習的神經歸一化最小和LDPC長碼譯碼 | |
所屬分類:技術論文 | |
上傳者:wwei | |
文檔大小:4407 K | |
標簽: LDPC 深度學習 神經網絡 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:LDPC碼是一種應用廣泛的高性能糾錯碼,近年來基于深度學習和神經網絡的LDPC譯碼成為研究熱點。基于CCSDS標準的(512,256)LDPC碼,首先研究了傳統的SP、MS、NMS、OMS的譯碼算法,為神經網絡的構建奠定基礎。然后研究基于數據驅動(DD)的譯碼方法,即采用大量信息及其經編碼、調制、加噪的LDPC碼作為訓練數據在多層感知層(MLP)神經網絡中進行訓練。為解決數據驅動方法誤碼率高的問題,又提出了將NMS算法映射到神經網絡結構的神經歸一化最小和(NNMS)譯碼,取得了比NMS更優秀的誤碼性能,信道信噪比為3.5 dB時誤碼率下降85.19%。最后研究了提升NNMS網絡的SNR泛化能力的改進訓練方法。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2