融合多教師模型的知識蒸餾文本分類 | |
所屬分類:技術論文 | |
上傳者: | |
文檔大小:3704 K | |
標簽: 文本分類 知識蒸餾 BERT-wwm-ext | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:針對簡單文本分類模型精度不高,預訓練模型結構復雜,在實際環境中難以直接使用的問題,提出多教師知識蒸餾的文本分類方法。該模型使用“教師-學生網絡”的訓練方法,教師模型為BERT-wwm-ext和XLNet預訓練模型,將兩個模型輸出的概率矩陣通過權重系數融合為軟標簽。學生模型為BiGRU-CNN網絡,使用均方差函數計算軟標簽誤差,使用交叉熵損失函數計算硬標簽誤差,通過硬標簽和軟標簽訓練學生模型使損失函數值達到最小。實驗結果表明,提出的方法精度較學生模型有較大的改進,接近預訓練模型,在保證分類精度的前提下減少了運行時間,提高了效率。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2