基于改進OS-ELM的電子鼻在線氣體濃度檢測* | |
所屬分類:技術論文 | |
上傳者:zhoubin333 | |
文檔大?。?span>4002 K | |
標簽: 電子鼻 濃度檢測 一維卷積神經網絡 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:電子鼻是一種仿生傳感系統,該設備能夠同時對多種氣體進行識別,因此應用在許多領域當中。氣體濃度算法是電子鼻對氣體定量分析時的核心部分,為了提高電子鼻濃度檢測算法精度,提出一種基于在線序列極限學習機(Online Sequential-Extreme Learning Machine, OS-ELM)的預測模型。該模型通過一維卷積神經網絡(One Dimensional Convolutional Neural Network, 1DCNN)提取特征,使用OS-ELM對氣體濃度進行預測,并提出了一種改進的粒子群(Particle Swarm Optimization, PSO)算法以克服OS-ELM需人工調整模型參數的問題。由理論分析,改進的算法比傳統PSO算法有更強的搜索能力。實驗結果表明,所提模型對氣體的預測精度上較傳統的預測模型具有更高的預測精度和泛化能力。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2