基于DBN-BP深度算法的熱軋板帶橫斷面預測 | |
所屬分類:技術論文 | |
上傳者:aetmagazine | |
文檔大小:648 K | |
標簽: 熱軋 深度學習 板帶厚度預測 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:隨著各工業領域的快速發展,市場對薄規格、高強度板帶產品的需求快速增加。而熱軋板帶橫斷面形狀是熱軋板帶產品質量的主要評價指標。基于數據挖掘技術,對軋機數據庫中的數據進行分析與處理,其中數據挖掘技術采用深度置信網絡(Deep Belief Neural,DBN)和BP(Back Propagation)算法相結合,構建板帶橫向厚度分布的預測模型。DBN-BP算法由多個限制玻爾茲曼網絡(Restricted Botlzmann Machine,RBM)逐層堆疊而成,并使用無監督的逐層訓練的方式得到網絡的權值矩陣和偏置供BP算法使用,而BP算法通過誤差反向傳播的方式對整個網絡進行微調。該方法克服了BP算法因隨機初始化權值參數而陷入局部最優和訓練時間長的缺點。通過與BP算法相比較可知,采用DBN-BP方法預測終軋道次穩定軋制時板帶中點厚度誤差在±5.6 μm范圍內的概率可達95%;而BP算法的預測誤差范圍為±11 μm。并且通過對板帶橫斷面形狀的預測結果分析可知,相比于BP算法,DBN-BP深度學習方法對于板帶邊部厚度的預測更具有優勢。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2