《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 復雜背景下小尺寸多角度人臉檢測方法研究
復雜背景下小尺寸多角度人臉檢測方法研究
網絡安全與數據治理
黃杰,劉芬
天津職業技術師范大學電子工程學院
摘要: 為了提升復雜背景下小尺寸人臉檢測精度,提出了一種人臉檢測方法GhostNet-MTCNN。在多任務級聯卷積神經網絡(MTCNN)主干網絡上,將占用計算資源的普通卷積進行舍棄,利用GhostNet網絡中計算量更低的Ghost bottleneck模組替代卷積的作用,重新構建網絡特征提取功能,從而搭建一個新的模型。實驗結果表明,該方法可以有效平衡參數量和精度。在Easy、Medium、Hard三種驗證集上,與MTCNN相比在參數量僅增加0.62M的前提下精度分別提升了 5.6%、6.6%、7.8%,與MobileNetV3-MTCNN相比在參數量減少1.27M的同時精度又分別提升了1.6%、0.8%、0.5%。該研究能夠在復雜場景下提高模型對小尺寸、多角度人臉檢測精度,同時也能夠有效平衡參數量和檢測精度使其成為在邊緣設備部署中更優的選擇。
中圖分類號:TP18文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2024.04.008
引用格式:黃杰,劉芬.復雜背景下小尺寸多角度人臉檢測方法研究[J].網絡安全與數據治理,2024,43(4):46-52.
Research on small.scale, multi.angle face detection methods in complex backgrounds
Huang Jie,Liu Fen
School of Electronic Engineering, Tianjin University of Technology and Education
Abstract: A face detection approach which is named GhostNet.MTCNN was proposed to enhance the precision of small sized face detection in complex backgrounds. On the backbone of MTCNN, this approach uses the lower computational Ghost bottleneck module which is in the GhostNet to replace the convolutional function, and discards the common convolution which occupies computer resources to configure the network′s feature extraction function. Through the process, a new module will be set up. The experimental results showed that the approach can effectively balance parameter quantity and precision. Across three validation sets categorized as Easy, Medium and Hard, compared to the original MTCNN, the proposed GhostNet-MTCNN achieves notable improvements in accuracy respectively 5.6%, 6.6% and 7.8%, while the parameter quantity only with a minimal increase of 0.62M. Furthermore, compared to MobileNetV3-MTCNN, GhostNet-MTCNN outperforms by enhancing accuracy by 1.6%, 0.8% and 0.5%, meanwhile a reduction in parameter quantity by 1.27M. The study can not only enhance the precision of the module to detect the small-sized and multi-angle faces in complex backgrounds but also can effectively balance parameter quantity and detection precision, which will make it a superior choice for edge deployment devices.
Key words : face detection; multi-task cascaded convolutional networks; lightweight network; edge devices

引言

人臉檢測技術廣泛應用于考勤、解鎖設備、身份驗證、監控場所、自動駕駛等場合[1-3]。在當前的人臉檢測領域,通常采用深度神經網絡架構。2014年Girshick等人提出的R-CNN[4]目標檢測算法模型成功地將深度學習應用到目標檢測領域,這種目標檢測算法使用的是基于候選區域的檢測方法。Ren等人在FastR-CNN基礎上進行改進,提出了FasterR-CNN[5],該模型提出了專門的候選區域生成網絡。除了以上兩種目標檢測網絡模型外,還有基于單次目標檢測的網絡模型,如YOLO[6-8]和SSD[9]。這類方法優勢在于檢測速度快,但對小目標的檢測效果不佳。這些深度神經網絡在邊緣設備部署十分消耗資源,對于硬件的計算能力和能耗的要求很高,很難應用到實際場景中。多任務級聯卷積神經網絡(Multi-task Cascaded Convolutional Networks,MTCNN)[10]作為一種經典的人臉檢測方法,以其高效的性能、模型復雜度低而聞名,更適合邊緣設備的應用。但隨著人臉檢測任務的不斷復雜化,MTCNN也面臨一系列挑戰,例如在小尺寸、遮擋、多角度和光照變化等情況下的檢測效果下降。文獻[11]中將MTCNN與VGGNet相結合,提升了模型檢測精度,但是相對應的模型計算量也變多了。


本文詳細內容請下載:

http://www.j7575.cn/resource/share/2000005968


作者信息:

黃杰,劉芬

(天津職業技術師范大學電子工程學院 ,天津300222)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 99亚洲精品视频 | 久久作爱视频 | 四虎影视色费永久在线观看 | 欧美日韩亚洲成人 | 久久亚洲国产成人精品性色 | 国产一区二区三区久久 | 亚洲 欧美 中文 日韩专区 | 国产亚洲精品高清在线 | 久久综合五月天婷婷伊人 | 色狠狠成人综合网 | 毛片免费全部播放一级 | 四虎澳门永久8848在线影院 | 日本国产亚洲 | 99资源在线 | 日本成人一区二区三区 | 日韩免费视频在线观看 | 日本久久网站 | 免费小视频在线观看 | 国产日韩精品一区在线不卡 | 蜜臀免费视频 | 免费国产高清精品一区在线 | 男人的天堂久久香蕉国产 | 免费成人看片 | 99re国产视频 | 99久久久免费精品免费 | 就爱啪啪网 | 私人免费电影影院 | 两性视频久久 | 综合国产在线 | 午夜美女福利视频 | 视频一区二区精品的福利 | 欧美国产小视频 | 九九九久久 | 97九色| 久久精品www | 国产xxxxx在线播放 | 热久久中文字幕 | 奇米网在线视频 | 精品亚洲性xxx久久久 | 国产成人亚洲精品77 | 奇米影音先锋 |