基于改進YOLOv5的路面裂縫檢測方法
電子技術應用
王向前1,成高立1,胡鵬2,夏曉華2
1.陜西高速機械化工程有限公司,陜西 西安 710038;2.長安大學 公路養護裝備國家工程研究中心,陜西 西安710064
摘要: 針對現有裂縫檢測模型體積較大且檢測精度不高的問題,提出一種基于輕量化網絡的無人機航拍圖像裂縫檢測方法。首先,使用MobileNetv3網絡替代YOLOv5的主干網絡,降低模型大??;其次,引入C3TR和CBAM模塊提高網絡表征能力,將損失函數替換為EIOU以提高模型的魯棒性。實驗結果表明,該方法在自制數據集上獲得98.9%的精度,相較于原始YOLOv5提高1.2%,模型大小減小51.5%,檢測速度提高37%。改進后的模型在精度、大小和速度上均優于Faster-RCNN等4種常見裂縫檢測模型,滿足了裂縫檢測的實時性、輕量化和精度需求。
中圖分類號:TP391.41;U418.6 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.234577
中文引用格式: 王向前,成高立,胡鵬,等. 基于改進YOLOv5的路面裂縫檢測方法[J]. 電子技術應用,2024,50(3):80-85.
英文引用格式: Wang Xiangqian,Cheng Gaoli,Hu Peng,et al. Pavement crack detection method based on improved YOLOv5[J]. Application of Electronic Technique,2024,50(3):80-85.
中文引用格式: 王向前,成高立,胡鵬,等. 基于改進YOLOv5的路面裂縫檢測方法[J]. 電子技術應用,2024,50(3):80-85.
英文引用格式: Wang Xiangqian,Cheng Gaoli,Hu Peng,et al. Pavement crack detection method based on improved YOLOv5[J]. Application of Electronic Technique,2024,50(3):80-85.
Pavement crack detection method based on improved YOLOv5
Wang Xiangqian1,Cheng Gaoli1,Hu Peng2,Xia Xiaohua2
1.Shanxi Expressway Mechanization Engineering Limited Company, Xi′an 710038, China; 2.National Engineering Research Center of Highway Maintenance Equipment, Chang′an University, Xi′an, 710064,China
Abstract: Aiming at the problem that the existing crack detection model is large in size and the detection accuracy is not high, this paper proposes a crack detection method for UAV aerial images based on lightweight network. Firstly, the MobileNetv3 network is used instead of the YOLOv5 backbone network to reduce the model size. Secondly, the C3TR and CBAM modules are introduced to improve the network characterization ability, and the loss function is replaced with EIOU to improve the robustness of the model. Experimental results show that the proposed method obtains 98.9% accuracy on the self-made dataset, which is 1.2% higher than the original YOLOv5, the model size is reduced by 51.5%, and the detection speed is increased by 37%. The improved model is superior to four common crack detection models such as Faster-RCNN in terms of accuracy, size and speed, which meets the real-time, lightweight and accuracy requirements of crack detection.
Key words : road surface crack detection;YOLOv5;object detection;C3TR;CBAM;EIOU
引言
近年來,我國公路蓬勃發展,公路保養維護任務貫穿路面整個使用階段[1]。在裂縫出現初期及時實現病害檢測并修復,可有效地減緩或防止初期裂縫的惡化,對于提高路面使用壽命、保障行車安全具有重要意義。
路面裂縫檢測方法主要有3種:傳統的人眼觀察識別方法主觀性強;常規圖像處理方法存在開發成本大、檢測精度不高等問題;卷積神經網絡相較于常規圖像處理方法具有泛化性好、開發成本低等優點,但存在模型體積較大、檢測精度有待提高的問題。文獻[2]通過實驗表明R-CNN系列、SPP-net和SSD等現有卷積神經網絡模型體積較大;文獻[3]證明YOLO的參數量較上述目標檢測算法較少。但YOLO[3-4]系列算法在實際應用中依然存在模型體積大、裂縫檢測精度不高等問題[5]。
本文詳細內容請下載:
http://www.j7575.cn/resource/share/2000005920
作者信息:
王向前1,成高立1,胡鵬2,夏曉華2
1.陜西高速機械化工程有限公司 2.長安大學 公路養護裝備國家工程研究中心
此內容為AET網站原創,未經授權禁止轉載。