《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于多尺度注意力融合網絡的胃癌病理圖像分割方法*
基于多尺度注意力融合網絡的胃癌病理圖像分割方法*
電子技術應用
張婷1,秦涵書1,趙若璇2
(1.重慶醫科大學附屬第一醫院 信息中心,重慶 400016;2.重慶大學 光電技術與系統教育部重點實驗室,重慶 400044)
摘要: 近年來,隨著深度學習技術的發展,基于編解碼的圖像分割方法在病理圖像自動化分析上的研究與應用也逐漸廣泛,但由于胃癌病灶復雜多變、尺度變化大,加上數字化染色圖像時易導致的邊界模糊,目前僅從單一尺度設計的分割算法往往無法獲得更精準的病灶邊界。為優化胃癌病灶圖像分割準確度,基于編解碼網絡結構,提出一種基于多尺度注意力融合網絡的胃癌病灶圖像分割算法。編碼結構以EfficientNet作為特征提取器,在解碼器中通過對多路徑不同層級的特征進行提取和融合,實現了網絡的深監督,在輸出時采用空間和通道注意力對多尺度的特征圖進行注意力篩選,同時在訓練過程中應用綜合損失函數來優化模型。實驗結果表明,該方法在SEED數據集上Dice系數得分達到0.806 9,相比FCN和UNet系列網絡一定程度上實現了更精細化的胃癌病灶分割。
中圖分類號:TP391 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.233934
中文引用格式: 張婷,秦涵書,趙若璇. 基于多尺度注意力融合網絡的胃癌病理圖像分割方法[J]. 電子技術應用,2023,49(9):46-52.
英文引用格式: Zhang Ting,Qin Hanshu,Zhao Ruoxuan. Gastric cancer pathological image segmentation method based on multi-scale attention fusion network[J]. Application of Electronic Technique,2023,49(9):46-52.
Gastric cancer pathological image segmentation method based on multi-scale attention fusion network
Zhang Ting1,Qin Hanshu1,Zhao Ruoxuan2
(1.Information Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; 2.Key Laboratory of Optoelectronic Technique System of the Ministry of Education, Chongqing University, Chongqing 400044,China)
Abstract: In recent years, with the development of deep learning technology, the research and application of image segmentation methods based on coding and decoding in the automatic analysis of pathological images have gradually become widespread. However, due to the complexity and variability of gastric cancer lesions, large scale changes, and the blurring of boundaries caused by digital staining images, segmentation algorithms designed solely from a single scale often cannot obtain more accurate lesion boundaries. To optimize the accuracy of gastric cancer lesion image segmentation, this paper proposes a gastric cancer image segmentation algorithm based on multi-scale attention fusion network using the coding and decoding network structure. The coding structure uses EfficientNet as the feature extractor. In the decoder, the deep supervision of the network is realized by extracting and fusing the features of different levels of multi-path. When outputting, the spatial and channel attention is used to screen the multi-scale feature map for attention. At the same time, the integrated loss function is used in the training process to optimize the model.The experimental results show that the Dice coefficient score of this method on the SEED data set is 0.806 9, which to some extent achieves more refined gastric cancer lesion segmentation compared to FCN and UNet series networks.
Key words : pathological image;image segmentation;attention fusion

0 引言

胃癌是全球第5位的常見癌癥和第4位的癌癥死亡原因[1],臨床上目前主要根據胃鏡活檢和醫生人工經驗來判斷切片病灶發展情況。臨床人工病理篩查需要花費專業病理醫生大量的時間,且由于臨床經驗的差異和醫療資源的限制,也存在一定的漏診和誤診比率。近年來,隨著深度學習在計算機視覺領域的成功應用,計算機輔助檢測在醫學上的應用也越來越廣泛。

基于深度學習的醫用圖像分割方法可以有效提取病灶目標區域,輔助醫生決策,提升診斷效率和準確性。這些方法主要包括基于經典的全卷積神經網絡(Fully Convolution Networks ,FCN),以及UNet、UNet++系列和DeepLab系列等基于編解碼的分割網絡[2-7]。常用的基于編解碼的病理圖像分割網絡基本流程如圖1所示。以胃癌病灶圖像為例,首先輸入獲取的病理圖像,經過圖像預處理(預處理階段一般包括圖像增強和圖像增廣等),之后送到編碼解碼網絡,進行圖像特征提取和圖像恢復,對于網絡直接預測的分割結果可適當增加部分后處理操作,包括形態學后處理等降噪方式來提升分割結果的精確性。其中特征提取網絡主要由卷積層、下采樣模塊和激活函數等組成,圖像恢復模塊是對特征提取后的特征圖進行重點區域捕捉定位和大小恢復,得到與輸入大小相對應的輸出圖像,主要包括上采樣模塊、特征融合模塊和激活函數。最后輸出經過反向傳播計算預測結果與標注值之間的誤差,通過梯度下降設置合適的學習率迭代訓練,得到損失函數極小值以優化預測結果。



本文詳細內容請下載:http://www.j7575.cn/resource/share/2000005636




作者信息:

張婷1,秦涵書1,趙若璇2

(1.重慶醫科大學附屬第一醫院 信息中心,重慶 400016;2.重慶大學 光電技術與系統教育部重點實驗室,重慶 400044)

微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 男人女人的免费视频网站 | 六月丁香伊人 | 给我免费观看视频 | 午夜.dj高清在线观看免费4 | 国产欧美成人一区二区三区 | 精品欧美一区二区三区精品久久 | 国产成人艳妇aa视频在线 | 日韩亚洲视频 | 玖玖99| 国产精品高清视亚洲一区二区 | 久久精品2021国产 | 丁香花在线观看观看 | 欧美天天综合 | 国产高清在线观看视频手机版 | 五月综合色 | 久久九九青青国产精品 | 婷婷综合激情五月中文字幕 | 天天射天天操天天色 | 福利在线一区二区 | 涩五月婷婷 | 国产精品视频久 | 免费一级毛片不卡不收费 | 99久久99久久精品免费看子 | 网络色综合久久 | 五月天在线播放视频在线 | 中文字幕日本亚洲欧美不卡 | 国产一级视频免费 | 免费一级毛片在线播放视频 | 久久国产小视频 | 色在线国产| 第一页在线视频 | 成人免费视频888在www电影 | 中国产一级毛片 | 成 人 黄 色视频免费播放 | 亚洲乱码国产乱码精品精98 | 久久久国产成人精品 | 久久成人国产精品 | 精品一区二区三区四区电影 | 美女网站免费久久久久久久 | 久久久久久久久一次 | 99热精品免费 |