《電子技術應用》
您所在的位置:首頁 > 測試測量 > 設計應用 > 基于改進YOLOv5的車輛屬性檢測
基于改進YOLOv5的車輛屬性檢測
2022年電子技術應用第7期
劉 俊,鐘國韻,黃斯雯,劉麒麟
東華理工大學 信息工程學院,江西 南昌330013
摘要: 車輛屬性檢測是一個基礎任務,其屬性檢測結果可以被應用到很多下游的交通視覺任務。提出了一種基于YOLOv5的車輛屬性檢測改進算法。針對檢測目標較小的問題,加入了卷積注意力模塊,讓網絡模型把更多的注意力放在小目標對象上;針對數據集樣本種類較少的問題,改進了YOLOv5的馬賽克數據增強方式;使用自門控激活函數Swish,起到抑制噪聲、加快收斂速度并提升模型魯棒性的作用。此外,還在公開車輛數據集VeRi-776的基礎上進行了詳細的車輛屬性標注,構建了一個車輛屬性數據集。實驗結果表明,改進后的算法比原始YOLOv5的平均精確率提升了4.6%,能夠準確地檢測到車輛圖像的通用屬性,可以供下游任務使用。
中圖分類號: TP391;TP183
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.222802
中文引用格式: 劉俊,鐘國韻,黃斯雯,等. 基于改進YOLOv5的車輛屬性檢測[J].電子技術應用,2022,48(7):19-24,29.
英文引用格式: Liu Jun,Zhong Guoyun,Huang Siwen,et al. Vehicle attribute detection based on improved YOLOv5[J]. Application of Electronic Technique,2022,48(7):19-24,29.
Vehicle attribute detection based on improved YOLOv5
Liu Jun,Zhong Guoyun,Huang Siwen,Liu Qilin
School of Information Engineering,East China University of Technology,Nanchang 330013,China
Abstract: Vehicle attribute detection is a basic task, which can be applied to many downstream traffic vision tasks. This paper presents an improved vehicle attribute detection algorithm based on YOLOv5. Aiming at the problem of small target detection, this paper adds the convolution attention module to make the network model pay more attention to the small target object. Aiming at the problem of less sample types of the dataset, this paper improves the mosaic data enhancement method of YOLOv5. The self-gated activation function Swish is used to suppress noise, accelerate convergence speed, and improve the robustness of the model. In addition, this paper also makes a detailed vehicle attribute labeling based on the public vehicle dataset VeRi-776, and constructs a vehicle attribute dataset. The experimental results show that the average accuracy of the improved algorithm is 4.6 % higher than that of the original YOLOv5, which can accurately detect the general attributes of vehicle images and can be used for downstream tasks.
Key words : vehicle attribute;object detection;YOLOv5 algorithm

0 引言

    目前計算機視覺研究者們在逐漸探索車輛圖像數據處理的落地應用,以助力智慧交通。車輛屬性檢測就是其中一個基礎的計算機視覺任務,主要檢測車輛的車燈、車牌、車輛logo等車輛屬性區域位置,其結果可以被應用到很多下游的交通視覺任務。例如利用檢測到的車燈屬性來判定車輛是否變道打轉向燈;車牌屬性可以作為車牌OCR識別的輸入,還可結合整體的車輛屬性,來實現車輛重識別等[1]

    由于早期顯卡的顯存和計算能力的限制,神經網絡無法設計得很深,導致當時目標檢測的研究還是偏向于傳統的圖像處理,主要可以分為區域選擇、特征提取和分類三步。區域選擇一般是通過在圖像上進行逐塊像素的遍歷,來找到與目標匹配的區域;特征提取則是依據研究員的相關先驗知識,如待檢測目標的形狀、紋理、明暗顏色等,從上一步獲取的區域中提取特征,代表算法有尺度不變特征變換(SIFT)[2]和方向梯度直方圖(HOG)[3];最后是訓練分類器將特征分類,主要利用將待分類數據的特征向量映射到高維空間,以實現將不同類別的數據分開,經典算法有支持向量機(SVM)[4]和AdaBoost[5]




本文詳細內容請下載:http://www.j7575.cn/resource/share/2000004580




作者信息:

劉  俊,鐘國韻,黃斯雯,劉麒麟

(東華理工大學 信息工程學院,江西 南昌330013)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 欧美极品欧美日韩 | 免费看avapp 免费久久精品视频 | 六月色丁香 | 99pao成人国产永久免费视频 | 人人爽人人草 | 国产青草视频免费观看97 | 激情五月综合婷婷 | 免费在线看视频 | 欧美精品三区 | 国产成人精品影视 | 日本aⅴ精品一区二区三区久久 | 久久成人精品免费播放 | 精品无人区一区二区三 | 久久久久久久久中文字幕 | 久久男人精品 | 99热国产精品 | 国内精品久久久久久不卡影院 | 色婷婷综合激情 | 视频国产免费 | www色婷婷| 久久久国产精品视频 | 日韩久久免费视频 | 午夜精品久久久久久 | 四虎www.| 国产精品岛国久久久久 | 久久久久久久久久免免费精品 | 奇米 影音先锋 | 久久亚洲午夜牛牛影视 | 久久久久久免费观看 | 久久精品亚洲乱码伦伦中文 | 欧美h网站 | 99re热在线视频 | 三级韩国一区久久二区综合 | 阿v天堂在线 | 爱婷婷网站在线观看 | 国产www色 | 男人天堂国产 | 男女乱配视频免费观看 | 美女羞羞视频网站 | 99久久99久久免费精品蜜桃 | 久久精品视频网 |