文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.10.009
引用格式: 張金霜,梁樹杰,左敬龍. 基于GWO-SVM算法的物聯網入侵檢測研究[J].信息技術與網絡安全,2020,39(10):44-48.
0 引言
隨著信息通信產業的發展,物聯網技術已被廣泛應用于人們生產生活中,其中智能家居就是物聯網技術運用的典型代表。然而物聯網技術在給人們生活帶來便捷的同時,也帶來了新的安全威脅,如個人隱私泄露、越權操作、數據破壞等[1]。其中,物聯網的通信與信息安全問題是關鍵一環,通過使用網絡入侵檢測技術,能有效抵御或降低此類安全風險。
網絡入侵檢測的核心是分類算法。盡管當下使用深度學習進行數據分類十分流行,但支持向量機(Support Vector Machine,SVM)作為一種經典的分類算法,因其具有小樣本學習、避免“維數災難”、算法魯棒性好等優點,在網絡入侵檢測的研究中仍占有一席之地,具有良好的推廣性和適應性。在面向物聯網環境,相較于其他常見的分類算法,如貝葉斯網絡、KNN算法、模糊聚類、隨機森林等,SVM表現出更好的綜合性能[2]。
SVM的分類效果與其參數選擇有較大的關系,關于參數如何選擇問題,常用的方法是使用群智能優化算法求解,如粒子群算法(Particle Swarm Optimization,PSO)、遺傳算法(Genetic Algorithm,GA)、人工蜂群算法(Artificial Bee Colony,ABC)等[3-6]。針對部分優化算法存在收斂速度慢、容易陷入局部最優解等缺點,本文引入一種新型元啟發性優化算法——灰狼優化算法對SVM參數進行優化。
灰狼優化算法(Grey Wolf Optimizer,GWO)由學者MIRJALILI S等在2014年提出[7],它通過模擬自然界灰狼種群等級機制和捕獵行為,確定捕食獵物的位置,實現優化搜索目的?;依撬惴ň哂袑崿F步驟簡單,需調整的參數少,收斂速度快,有較強的全局搜索能力等特點,在工程領域得到廣泛應用[8-10]。
本文詳細內容請下載:http://www.j7575.cn/resource/share/2000003139
作者信息:
張金霜1,梁樹杰1,左敬龍2
(1.廣東茂名幼兒師范專科學校 教育信息技術中心,廣東 茂名525000;
2.廣東石油化工學院 網絡與教育信息技術中心,廣東 茂名525000)