學會如何調試電路問題是學習過程中非常重要的一部分。為你診斷錯誤不是助教的責任,如果你以這種方式依賴其他人,那么你就錯過了實驗的一個關鍵點,你將不大可能在以后的課程中取得成功。除非你的運算放大器冒煙,電阻上出現了棕色燒傷痕跡,或者電容發生爆炸,否則你的元器件很可能沒問題。
必須為運算放大器始終提供直流電源,因此在添加任何其他電路元件之前,最好配置這些連接。圖1顯示了無焊試驗板上的一種可能的電源配置。我們將兩根長軌用于正電源電壓和地,另一根用于可能需要的2.5 V中間電源連接。板上包括電源去耦電容,其連接在電源和地(GND)軌之間。現在詳細討論這些電容的用途還為時過早,只需知道它們用于降低電源線上的噪聲并避免寄生振蕩。在模擬電路設計中,務必在電路中每個運算放大器的電源引腳附近使用小型旁路電容,這被認為是良好實踐。
圖1.電源連接
將運算放大器插入試驗板,然后添加導線和電容,如圖1所示。為避免以后出現問題,可能需要在試驗板上貼一個小標簽,指示哪些電源軌對應5 V、2.5 V和地。導線應利用顏色加以區分:紅色為5 V,黑色為2.5 V,綠色為GND。這有助于保持連接的有序性。
接下來,在ADALM1000板和試驗板上的端子之間建立5 V電源和GND連接。使用跳線為電源軌供電。注意,電源GND端子將是電路接地基準。有了電源連接之后,可能需要使用DMM直接探測IC引腳,確保引腳7為5 V且引腳4為0 V(地)。
注意,使用電壓表測量電壓之前,必須將ADALM1000插入USB端口。
單位增益放大器(電壓跟隨器):
第一個運算放大器電路很簡單(如圖2所示)。這稱為單位增益緩沖器,有時也稱為電壓跟隨器,它由轉換函數VOUT = VIN定義。乍一看,它似乎是一個無用的器件,但正如我們稍后將展示的那樣,其有用之處在于高輸入電阻和低輸出電阻。
圖2.單位增益跟隨器
使用試驗板和ADALM1000電源,構建圖2所示的電路。請注意,此處未明確顯示電源連接。任何實際電路中都會進行這些連接(如上一步中所做的那樣),因此從這里開始,原理圖中沒必要顯示它們。使用跳線將輸入和輸出連接到波形發生器輸出CA-V和示波器輸入CB-H。
通道A電壓發生器設置為1.0 V最小值和4.0 V最大值(3 V p-p,以2.5 V為中心),使用500 Hz正弦波。配置示波器,使輸入信號跡線顯示為CA-V,輸出信號跡線顯示為CB-V。導出所產生的兩個波形圖,并將其包含在實驗報告中,注意波形參數(峰值和頻率的基波時間周期)。你的波形應當確認其為單位增益或電壓跟隨器電路的說明。
緩沖示例:
運算放大器的高輸入電阻(零輸入電流)意味著發生器上的負載非常小;也就是說,沒有從源電路汲取電流,因此任何內部電阻(戴維寧等效值)上都沒有電壓降。所以,在這種配置中,運算放大器的作用類似于緩沖器,屏蔽信號源免受系統其他部分帶來的負載效應。從負載電路的角度看,緩沖器將非理想電壓源轉換成近乎理想的電壓源。圖3給出了一個簡單的電路,我們可以用它來演示單位增益緩沖器的這個特性。這里,緩沖器插在分壓器電路和某一負載電阻(10 kΩ電阻)之間。
圖3.緩沖器示例
斷開電源并將電阻添加到電路中,如圖3所示(注意這里沒有更改運算放大器連接,我們只是相對于圖2翻轉了運算放大器符號以更好地安排導線)。
重新連接電源,并將波形發生器設置為500 Hz正弦波、0.5 V最小值和4.5 V最大值(4 V p-p,以2.5 V為中心)。同時觀察VIN CA-V和VOUT CB-H,并在實驗報告中記錄幅度。使用示波器輸入CB-H還能測量運算放大器引腳3上的信號幅度。
圖形實例如圖4所示。
圖4.緩沖器曲線
移除10 kΩ負載,代之以1 kΩ電阻。記錄幅度。現在移動引腳3和2.5 V之間的1 kΩ負載,使其與4.7 kΩ電阻并聯。記錄輸出幅度如何變化。你能預測新的輸出幅度嗎?
簡單放大器配置
反相放大器:
圖5所示為常規反相放大器配置,輸出端有10 kΩ負載電阻。
圖5.反相放大器配置
現在使用R2 = 4.7kΩ組裝圖5所示的反相放大器電路。組裝新電路之前,請記住斷開電源。根據需要切割和彎曲電阻引線,使其平放在電路板表面,并為每個連接使用最短的跳線(如圖1所示)。記住,試驗板有很大的靈活性。例如,電阻R2的引線不一定要將運算放大器從引腳2橋接到引腳6;你可以使用中間節點和跳線來繞過該器件。
重新連接電源并觀察電流消耗,確保沒有意外短路。現在將波形發生器調整為500 Hz正弦波,設置為2.1 V最小值和2.9 V最大值(0.8 V p-p,以2.5 V為中心),并再次在示波器上顯示輸入和輸出。測量和記錄此電路的電壓增益,并與課堂上討論的原理進行比較。導出輸入/輸出波形圖,并將其包含在實驗報告中。
圖形實例如圖6所示。
圖6.反相放大器曲線
趁此機會說一下電路調試。在課堂中的某個時候,你可能無法讓電路工作。這并不意外,沒有人是完美的。但是,你不應簡單地認為電路不工作必定意味著器件或實驗儀器有故障。這基本上不是事實,99%的電路問題都是簡單的接線或電源錯誤。即便是經驗豐富的工程師也會不時出錯,因此,學會如何調試電路問題是學習過程中非常重要的一部分。為你診斷錯誤不是助教的責任,如果你以這種方式依賴其他人,那么你就錯過了實驗的一個關鍵點,你將不大可能在以后的課程中取得成功。除非你的運算放大器冒煙,電阻上出現了棕色燒傷痕跡,或者電容發生爆炸,否則你的元器件很可能沒問題。事實上,大多數器件在發生重大損傷之前都能容忍一定程度的濫用。當事情不妙時,最好的辦法就是斷開電源并尋找一個簡單的解釋,而不要急著責怪器件或設備。在這方面,DMM可是一件十分有價值的調試工具。
輸出飽和:
現在將圖5中的反饋電阻R2從4.7 kΩ更改為10 kΩ。現在的增益是多少?將輸入信號的幅度緩慢增加至2 V,仍然以2.5 V為中心,并將波形導出到實驗室筆記本電腦中。任何運算放大器的輸出電壓最終都會受電源電壓的限制,而在很多情況下,由于電路中存在內部電壓降,實際限制要遠小于電源電壓。根據你的以上測量結果量化AD8541的內部壓降。如果你有時間,可嘗試用OP97或OP27放大器替換AD8541,并比較它能產生的最小和最大輸出電壓。