具有多端口T1/E1/J1線卡的現(xiàn)代通信系統(tǒng)通過增加冗余來滿足電信網(wǎng)絡的高可用性要求。過去,這些系統(tǒng)曾經(jīng)用繼電器來實現(xiàn)N+1冗余切換。隨著每個線卡上的T1/E1/J1端口數(shù)和每個系統(tǒng)內(nèi)的線卡數(shù)的增加,繼電器方案不再可行,因為它們要占用大量的板上空間和供率。設計者正在用模擬開關代替繼電器。與繼電器相比模擬開關的優(yōu)點列在表格1中。
相關應用筆記:Intel(R) T1/E1/J1, N+1 Redundancy With Analog Switches and Intel(R) LXT38x Line Interface Units
表1. 模擬開關與繼電器的比較
Relay | Analog Switch | |
Board Space | 100mm2 | 15mm2 |
Power Consumption | 140mW | 5µW |
Switching Speed | 4ms | 30ns |
Reliability | Mechanical Operation | No Moving Parts |
本篇應用筆記介紹了如何使用模擬開關實現(xiàn)T1/E1/J1, N+1冗余保護。同時還提供了一些選擇模擬開關的指導,并給出了使用Maxim/Dallas模擬開關和T1/E1/J1收發(fā)器的測試結果。
冗余結構
圖1和圖2為兩種使用模擬開關的冗余結構。為清楚起見,分別畫出了發(fā)送接口和接收接口。對于每一個T1/E1端口,接收和發(fā)送接口都是在同一個電路板上的。圖中給出了為Dallas/Maxim收發(fā)器(如DS2155)推薦的典型接口變壓器和電阻。兩種結構中,都有一條保護總線走在底板上,輸入和輸出信號可以通過這個總線送到模擬開關。保護總線直接連接到備用(保護)線卡。
在圖1中("結構A”),模擬開關位于線卡上。結構A的優(yōu)點是,不必像下面的“結構B”那樣需要一個單獨的用于保護切換的線卡。但它要求即使在失效切換時開關也能獲得供電,這就要求一個單獨的專用電源。
圖1a. 冗余結構A: 接收通道。
圖1b. 冗余結構A: 發(fā)送通道。
在圖2(“結構B”)中,模擬開關在一個單獨的“保護切換卡”中。結構B的優(yōu)點是它不依賴于線卡中的常“開”電源,但是它需要額外的保護切換卡。
圖2a.冗余結構B: 接收通道。
圖2b. 冗余結構B: 發(fā)送通道。
模擬開關的選擇
為了滿足T1/E1/J1接口規(guī)范,選擇模擬開關必須認真考慮其電氣特性。因為發(fā)送和接收端口的要求有很大差異,我們分別考查它們。
發(fā)送接口開關
在發(fā)送接口,開關的導通電阻(Ron)是一個非常重要的參數(shù)。在圖1和圖2中,我們能看到開關的Ron與輸出驅(qū)動器和變壓器的初級線圈串聯(lián),因此它會略微減小輸出脈沖的幅度。在大多數(shù)情況下,幅度的減小可以簡單地通過降低串聯(lián)電阻(Rt)而得到補償,降低的幅度可對應于開關的典型Ron。例如,如果收發(fā)器推薦的Rt 為11Ω,Ron (典型值)為0.5Ω,那么實際的Rt就應該取10.5Ω。為了確保在整個工作范圍內(nèi)(包括溫度和電源的變化)正確的工作,保持Ron遠低于Rt電阻十分重要。較低的Ron也會有較好的Ron平坦度,從而降低輸出脈沖的失真。
一些收發(fā)器(如DS2155)允許用軟件調(diào)節(jié)輸出脈沖的幅度。這對于不使用輸出電阻(Rt = 0)的收發(fā)器,保證足夠的脈沖模板裕量非常有用。
在發(fā)送接口中另一個重要參數(shù)是開關的導通和關斷電容 (CON 和 COFF)。過量的導通電容會使輸出脈沖失真并降低發(fā)送器的回波損失特性。關斷電容在備用線卡通過保護總線發(fā)送時有重要影響,如圖1和圖2所示。在這種情況下,輸出驅(qū)動器看到的電容是所有其他線卡上關斷電容的并聯(lián)。
模擬開關如MAX4714和MAX4736的優(yōu)異性能非常適合于T1/E1發(fā)送切換。它們有非常低的Ron (典型值0.6Ω)和非常低的電容(典型值CON = 65pF,COFF = 30pF)。
接收接口開關
在接收通道,需要考慮的一個主要問題是開關對線路終端匹配的影響,并因此而對接收回波損失性能的影響。接收回波損耗與相關頻率范圍內(nèi)輸入終端與額定線路阻抗的匹配情況有直接關系。在T1/E1/J1應用中,這一頻率范圍延伸至3 MHz。因此,低電容對于保持高頻性能符合如ITU-T G.703這類標準是非常重要的。低電容的另一個優(yōu)點是它可以幫助改善開關的關斷隔離。關斷隔離在接收接口中尤其重要,它直接影響到噪聲耦合與誤碼率。
開關Ron電阻將與接收器引腳(RTIP/RRING)串聯(lián),如圖1和圖2所示。如果線路的端接僅由外部電阻Rr獨自提供,因為接收器阻抗非常高,所以Ron不會對接收電路造成很大的影響。然而,一些現(xiàn)代收發(fā)器如Dallas的DS2155通過連接一個可以由軟件選擇的與外部電阻Rr (每個60Ω)并聯(lián)的電阻提供內(nèi)部端接。因此,接收接口的Ron可以比發(fā)送接口的大一些,(為了減小電容),但是它仍應該保持足夠小,以免影響內(nèi)部端接收發(fā)器的性能。
Maxim的MAX4717提供平衡的很好的Ron和低電容,特別適合于T1/E1/J1接收接口應用。它的典型Ron 為3Ω,并具有非常低的電容(典型值CON = 15pF,COFF = 9pF)。
用Dallas/Maxim DS2155實現(xiàn)
用Dallas DS2155單片收發(fā)器的評估板測試圖1和圖2電路。模擬開關使用3.3V電源供電。測試裝置中的元件取值如下表所示:
Component | Value T1 Mode | Value E1 Mode (Twisted Pair) | Value E1 Mode (Coaxial Cable) | Notes |
Transmit Transformer |
1:2 PE-65771 |
1:2 PE-65771 |
1:2 PE-65771 |
Can also use other Dallas/Maxim recommended transformers (See App Note 351: "Transformer Selection Guide") |
Receive Transformer |
1:1 PE-68644 |
1:1 PE-68644 |
1:1 PE-68644 |
|
Rt | 0Ω | 10Ω | 10Ω | Internal transmit termination off |
Rr | 60Ω | 60Ω | 60Ω | Internal receive termination on |
Cr | 0.1μF | 0.1μF | 0.1μF | |
Receive Switch | MAX4717 | |||
Transmit Switch | MAX4714 |
使用本電路時必須關閉內(nèi)部發(fā)送端接功能。為了在E1雙絞線和同軸電纜中使用相同的發(fā)送電阻,必須將以下數(shù)值寫入發(fā)送線補償控制寄存器(TLBC):
TLBC (地址7Dh) = 6Ah
它設置驅(qū)動器的電壓,使輸出脈沖在120Ω(雙絞線)和75Ω(同軸)負載上都具有正確的幅度。
根據(jù)實際應用,你還需要給圖1和圖2中的電路增加浪涌保護器件。關于浪涌保護的詳細信息請訪問Dallas/Maxim網(wǎng)站上的相關應用筆記。
測試結果
根據(jù)圖1和圖2,我們可以看出,當N+1冗余結構中電路板數(shù)量N增加時,備用板收發(fā)器看到的最大并聯(lián)關斷電容也隨之增加。這個并聯(lián)電容將對輸出脈沖的形狀和回波損失特性產(chǎn)生影響。另一方面,在正常的工作狀態(tài)下(備用板沒有工作),開關的導通電容是收發(fā)器看到的最主要的電容,并且這個(較小的)電容比較容易處理的。
為了在最差情況的容性負載下(備用板被激活)實現(xiàn)良好的性能,建議N不要超過8(1:8冗余保護)。圖3至圖5顯示了測得的T1/E1輸出脈沖。
圖3. 輸出脈沖, T1 模式
T1, 0-133ft LBO, 0 ft電纜,正常工作 (1) | T1, 0-133ft LBO, 0 ft電纜, N = 8(2) |
![]() |
![]() |
圖4.輸出脈沖, E1 雙絞線
E1, 同軸電纜,正常工作 (1) | E1,同軸電纜, N = 8 (2) |
![]() |
![]() |
圖5. 輸出脈沖, E1同軸電纜
E1, 雙絞線,正常工作 (1) | E1, 雙絞線, N = 8 (2) |
![]() |
![]() |